

Available online at www.sciencedirect.com

Electrochimica Acta 53 (2008) 2560-2566

www.elsevier.com/locate/electacta

Fabrication of TiO₂ nanotubes by using electrodeposited ZnO nanorod template and their application to hybrid solar cells

Seok-In Na, Seok-Soon Kim, Woong-Ki Hong, Jeong-Woo Park, Jang Jo, Yoon-Chae Nah, Takhee Lee, Dong-Yu Kim*

Heeger Center for Advanced Materials, Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, South Korea

Received 16 August 2007; received in revised form 10 October 2007; accepted 14 October 2007 Available online 25 October 2007

Abstract

Vertically aligned TiO₂ nanotubes have been fabricated on the indium-doped tin oxide (ITO) by a simple and versatile technique using the electrochemically deposited ZnO nanorods, oriented along the *c*-axis, as a template in the spin-on based sol–gel reaction of a Ti precursor. The diameter, length, and shape of TiO₂ nanotubes were controlled by changing the initial ZnO nanorod template and the spin conditions during sol–gel process of a Ti precursor. Scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis, and X-ray diffraction (XRD) were used to confirm the successful formation of TiO₂ nanotubes and characterize their structure and morphology. Furthermore, as an application of the TiO₂ nanotubes, hybrid solar cells based on TiO₂ and poly[2-methoxy,5-(2'-ethyl-hexyloxy)1,4-phenylenevinylene] (MEH-PPV) were successfully fabricated.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Electrodeposition; Zinc oxide nanorod; Sol-gel process; Titanium dioxide nanotubes; Hybrid solar cells

1. Introduction

Since the introduction of carbon nanotubes by Iijima in 1991 [1], various nanotubes and tubular nanostructures continue to attract attention due to a high surface-to-volume ratio, structural control capabilities, and a geometry that functions as a current-carrying component in various devices. They also have remarkable optical, electrical, magnetic, and chemical properties that are distinctive from conventional bulk materials and zero-dimensional nanoparticles [2–4]. For more than a decade, investigations on the synthesis and characterization of many kinds of nanotubes, such as boron nitride and carbide, metal dichalcogenide, SiO₂, SnO₂, GaN, ZnO, TiO₂, ZrO₂, and vanadium oxides, have been reported [2–8]. In particular, among the various inorganic nanotubes, the TiO₂-based nanotube has been intensively studied for potential nanoscale electronics, optoelectronics and biochemical-sensing applications due to its high

0013-4686/\$ – see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.electacta.2007.10.041

refractive index, chemical stability, and superior photocatalytic activity [9–12].

Up to now, much effort has been devoted to forming TiO₂ nanotubes by using hydrothermal synthesis [13,14], deposition on template [15–19], seeded-growth [20], and anodization of titanium [9,21]. Specially, in the case of the anodic TiO_2 nanotubes, a precise control of the TiO₂ tube dimensions and the feasibility of TiO₂ nanotubes to be formed on Si substrate have been reported for their practical applications [22,23]. Although each of the above-mentioned methods has advantages, none of them provide all the desired aspects: precise control of the nanotube configuration, dense arrays of vertical or parallel-aligned TiO₂ nanotubes, low cost, a high throughput process, and feasibility of their use in a large area as well as on widely used substrates such as glass, silicon, and transparent conducting oxide (TCO). Therefore, the pursuit of novel fabrication methods for nanotubes continues to be driven by an ever-increasing world of practical device applications.

Among various methods for fabricating TiO_2 nanotubes, few efforts have been made on the study of use of ZnO nanorods as a template. Very recently, Qiu et al. [18,19] successfully

^{*} Corresponding author. Tel.: +82 62 970 2319; fax: +82 62 970 2304. *E-mail address:* kimdy@gist.ac.kr (D.-Y. Kim).

fabricated aligned TiO₂ nanotube arrays by using an aqueous solution synthesized ZnO rod as a template. However, the formation of ZnO nanorod array by an aqueous solution synthesis requires long time (\sim 5 h) and the fabrication of pure TiO₂ tubes vertically aligned on a substrate is difficult due to the existence of the ZnO seed layer, which also can be etched by acidic solution when removing ZnO rod templates, leading to the collapse of TiO₂ tubes.

For this study, a simple and controllable fabrication method is described for vertically aligned TiO₂ nanotubes having wellcontrolled dimensions directly on indium-doped tin oxide (ITO) substrates, which are transparent electrodes widely used in optoelectronics such as solar cells and light emitting diodes. We used electrodeposited ZnO nanorods as a template for the fabrication of TiO₂ nanotubes, because growing of one-dimensional ZnO nanorods by electrodeposition is a simple, fast, and lowtemperature method with easy control of density, diameter, and height over large areas [24,25] in contrast with vacuum and high temperature processes. As is well known, the diameters and heights of electrodeposited ZnO nanorods can be determined by experimental conditions such as the concentration of the Zn precursor, the electrodeposition time, the temperature, and the applied voltage [26,27]. In addition, we take advantage of the spin-on based sol-gel reaction of a Ti precursor, leading to the formation of a well-aligned, discrete, and freestanding TiO₂ nanotube array by controlling the rate of hydrolysis of the Ti isopropoxide, based on the conditions used in the previous reports by our group [28,29]. In contrast with any vaccum techniques, the sol-gel process provides low cost and high throughput, which are the most significant factors for practical use.

Organic-based solar cells [30,31] are attracting enormous attention as a low-cost, lightweight, and scalable source of renewable energy. For the realization of commercialized organic solar cells, most of the work on organic-based solar cells to date has focused on fundamental problems such as relatively low efficiency and poor stability that must be overcome [32-38]. For example, in hybrid solar cells, various approaches including the application of an ordered nanostructure [32], the substitution of magnesium into a ZnO acceptor [34], and an effort to understand polymer degradation [37] have been studied to improve cell efficiency and stability. Herein, we investigated the application of TiO₂ nanotubes to hybrid solar cells based on TiO₂ and poly[2-methoxy,5-(2'-ethyl-hexyloxy)1,4phenylenevinylene] (MEH-PPV). An improved performance of hybrid solar cells can be expected by using the TiO₂ nanotube array on the ITO substrate, resulting from an extended interfacial area for charge separation and a straight pathway for electron transport to the ITO electrode.

2. Experimental

All the chemicals were purchased from Aldrich. The process we used to create TiO_2 nanotubes on ITO substrates involved three main steps (Fig. 1): first, ITO (Samsung Corning Co., Ltd.) coated glass substrates were cleaned in ultrasonic bath with acetone and isopropyl alcohol successively for 20 min followed by drying in a nitrogen stream. The ZnO nanorods were then

Removal of ZnO nanorods by wet etching

Fig. 1. Schematic process flow for the fabrication of the TiO₂ nanotubes.

electrodeposited on ITO substrates at -0.9 V versus Ag/AgCl electrode from an aqueous solution composed of 5×10^{-3} M ZnCl₂ and 0.1 M KCl supporting electrolyte in ultra-pure water (~18 MΩcm), saturated with bubbling oxygen at 80 °C [39] with an Autolab PGSTAT30 Potentiostat/Galvanostat. Here, an ITO substrate, a Pt wire, and an Ag/AgCl were used as the working, the counter, and the reference electrodes, respectively. The overall deposition reaction in the presence of zinc ions and dissolved oxygen is Zn²⁺ + 0.5O₂ + 2e⁻ → ZnO.

Second, the process for the formation of TiO₂-covered ZnO nanorod arrays on ITO substrates was performed via spin-on based sol–gel reaction at room temperature with the Ti-precursor composed of 2 ml Ti isopropoxide in 150 ml 2-propanol solution containing 0.75 ml HCl. To fabricate TiO₂-covered ZnO nanostructures, the Ti-precursor solution was dropped on the ITO substrates with freestanding ZnO nanorods and then spun at room temperature, followed by heat treatment at 450 °C for

Growth of ZnO nanorods on ITO

30 min in a furnace to form the TiO₂ crystalline structures. Here, the ratio of each component was optimized to control the rate of hydrolysis of Ti isopropoxide and prevent the unnecessary wet-etch of ZnO nanorods during the spin coating process, resulting in well-defined and vertically aligned TiO₂-covered ZnO nanorod arrays [28,40–41].

Third, after heat treatment, the ITO substrates with TiO₂covered ZnO nanorods were immersed into an aqueous solution of 0.75 M HCl to remove the ZnO nanorod template. After the immersion in HCl solution for 5 min at room temperature, all ZnO was etched out and only the TiO₂ nanotubes remained, due to selective wet etching in the acidic conditions. After all processes, the formation and structure of TiO₂ nanotubes were confirmed by SEM (Hitachi S-4700), EDX analysis, and XRD.

For an application of fabricated TiO₂ nanotubes, hybrid solar cells were fabricated according to the following procedure. Two types of TiO₂ covered ITO substrates were prepared by a spin-on based sol-gel reaction without and with ZnO nanorod templates. For hybrid solar cells, MEH-PPV (1 wt%) in chlorobenzene, which generates exitons under illumination, was spin-cast on the flat TiO₂ film with thickness of \sim 100 nm and TiO₂ nanotube arrays at 500 rpm in a N₂ glove box. Poly(3,4ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS, Baytron P CH 8000) was then spin-cast with a thickness of \sim 50 nm from an aqueous solution on the substrates, after passing through a 0.45 µm filter and mixing for 1 h. After drying for 10 min at 120 °C in air, an Au top electrode was evaporated thermally in a vacuum in the order of 10^{-6} Torr. The optical properties of MEH-PPV and TiO2 nanotubes coated with MEH-PPV were studied via UV-vis absorption spectra and PL spectra measurements. Cell performance was measured under 1 sun using a xenon light source and an air mass (AM) 1.5 global filter. Photocurrent-voltage measurements were performed by using a Keithley 4200 instrument. A calibrated silicon reference solar cell certificated by the National Renewable Energy Laboratory (NREL) was used to confirm the measurement conditions.

3. Results and discussion

The preparation of initial ZnO nanorods as templates and successful formation of TiO₂ nanotubes on ITO were observed by scanning electron microscopy (SEM) images and the element signatures of Zn, Ti, and O in the energy-dispersive X-ray (EDX) spectra of the ZnO nanorods and TiO₂ nanotubes. Fig. 2(a) shows SEM images of the starting ZnO nanorod array templates. These nanorods have uniform lengths of ~600 nm and diameters of 170 ± 20 nm, which can be determined by concentration of the Zn precursor, applied voltage, and time during electrode-position. Here, the applied voltage, time, and temperature were controlled to -0.9 V, 30 min, and 80 °C, respectively.

After the formation of TiO_2 , the heat treatment, and template removal by the wet etching, the overall morphology of the initial ZnO nanorod arrays was maintained and the heights and diameters of the resulting TiO_2 nanotubes were similar to those of the ZnO nanorods as shown in Fig. 2(a), (c), and (e). Indeed, the cross-sectional images in the insets of Fig. 2(a) and (e) indicate that the vertically aligned TiO_2 nanotubes on ITO were relatively well defined along ZnO nanorod templates. At this point, for the formation of denser and better-defined TiO_2 nanotubes on ITO substrates, the concentration of the Ti-precursor and the spin conditions, as well as initial conditions of the ZnO nanorod templates, should be carefully considered and optimized.

Interestingly, either top-closed or top-opened TiO_2 nanotubes were observed according to the spin rate (slow (1000 rpm)) or fast (3000 rpm)) during the spin-on based sol–gel process as shown in Fig. 2(c) and (e) and the insets of Fig. 2(c) and (f), respectively. It may be attributed to the fact that the amount of remaining Tiprecursor on the top of the ZnO nanorod template was inversely dependent on the spin rate because the Ti-precursor solution would be forced to move in the lateral direction during the spin coating process [42], which resulted in the top-opened TiO_2 nanotubes.

Fig. 2(b), (d), and (f) shows the EDX spectra before and after the formation of TiO₂ nanotubes. The EDX spectra revealed the successful formation of TiO₂ nanotubes and the complete elimination of the ZnO nanorods as a template, confirmed by the absence of a peak at ~1 keV corresponding to the Zn in the EDX spectra obtained from the sample area shown in the insets of Fig. 2(d) and (f). The formation of TiO₂ can also be confirmed by the measurement of X-ray diffraction (XRD) patterns. Fig. 3 shows the XRD patterns obtained from the TiO₂ nanotube arrays on the ITO substrate. After calcination at 450 °C in air and removal of ZnO rod templates, all peaks apparently corresponded to anatase TiO₂ (JCPDS Card no. 21-1272) and ITO (JCPDS Card no. 32-0458), indicating that the ZnO rod templates were completely removed by the wet etching and the TiO₂ nanotubes were successfully fabricated.

Taken together, the above SEM, EDX, and XRD measurements show that we have successfully prepared vertically well-aligned TiO_2 nanotubes on ITO substrates by using all solution processes, including the formation of the electrodeposited ZnO nanorod from an aqueous solution, the formation of TiO_2 nanotubes by spin-on based sol–gel reaction of a Ti-precursor, and the removal of a ZnO template by immersion in an acidic solution environment, instead of using any vacuum processes, such as atomic layer deposition or chemical vapor deposition, etc.

Furthermore, to demonstrate practical application of the TiO₂ nanotubes, hybrid solar cells based on TiO₂ nanotubes and MEH-PPV were prepared. Typically, the TiO_2 , one of the most widely exploited inorganic materials due to its low cost, chemical stability, electron accepting ability, and proper band gap, is prepared on a TCO substrate by a casting or sol-gel method followed by infiltration with a conjugate polymer [43–48]. In early studies, the incomplete polymer infiltration into nanoporous TiO₂ and poor charge transport, resulting from the randomly networked TiO₂ nanoporous film, could be main factors causing the poor performance of hybrid solar cells. To overcome these problems, various approaches including the application of an ordered nanostructure have been intensively investigated to achieve a large interfacial area and straight carrier paths to the electrodes as well as an easy polymer infiltration [49–51]. Therefore, with its vertical array, standing on ITO substrates, the TiO₂ nanotube is a good candidate for use as an electron

Fig. 2. FESEM images and EDX spectra: (a) and (b) ZnO nanorods on ITO substrates before the formation of TiO_2 nanotubes; (c)–(f) corresponding images and spectra after the formation of TiO_2 nanotubes with different spin coating rate via the spin-on based sol–gel reaction of Ti-precursor solution followed by heat treatment and removal of ZnO nanorods by wet etching; (c) and (d) top-closed TiO₂ nanotubes with low spin rate (1000 rpm); (e) and (f) top-opened TiO₂ nanotubes with high spin rate (3000 rpm) (insets: (a) the cross-sectional image of ZnO nanorods; (c) top view image of top-closed TiO₂ nanotubes (one fractured tube was captured, clearly showing "tube" structure); (e) the cross-sectional image of top-opened TiO₂ nanotubes; insets of (b), (d), and (f): corresponding images for EDX analysis).

acceptor structure for hybrid metal-oxide/polymer photovoltaic devices.

Before the fabrication of hybrid solar cells, optical properties were observed to understand the nature of the charge transfer between MEH-PPV and TiO₂ nanotubes. Fig. 4(a) shows the typical UV–vis absorption spectra of MEH-PPV, TiO₂ nanotubes, and TiO₂ nanotubes coated with MEH-PPV. The absorption spectrum of MEH-PPV in Fig. 4(a) exhibits the absorption band peak at ~500 nm resulting from the $\pi \rightarrow \pi^*$ transition of the MEH-PPV. Compared with the absorption spectrum of MEH-PPV, in the case of the TiO₂ nanotubes/MEH-PPV, absorbance was increased without noticeable wavelength shift, caused by the two component contributions. This indicates that the ground-state charge transfer at the interfaces is negligible [52]. Fig. 4(b) shows that the PL emission peak of MEH-PPV appears at ~600–700 nm wavelength, resulting from the excitation of the MEH-PPV at \sim 500 nm wavelength. Here, a significant quenching of emission intensity observed in Fig. 4(b) indicates the charge transfer from MEH-PPV to the TiO₂ nanotubes, showing the possibility of an efficient charge separation at the interface between the TiO₂ nanotubes and the MEH-PPV, which ultimately would result in the production of electricity under the illumination of light [53].

Fig. 5 shows the current density–voltage (J-V) curves of the hybrid solar cells based on the TiO₂ nanotube in combination with MEH-PPV. For a better comparative study, two types of TiO₂ electron acceptors, with and without TiO₂ nanotubes, were prepared. The reference cell with the flat TiO₂ film was prepared by using identical conditions and processes with that of TiO₂ nanotube arrays only except for the electrodepositon process to form ZnO nanorod templates. The inset of Fig. 5 shows the crosssectional image of the TiO₂ nanotubes, standing perpendicular

Fig. 3. XRD spectrum of TiO_2 nanotubes on the ITO substrate after heat treatment and removal of ZnO nanorod templates by wet etching.

to the ITO substrate, having diameters of ~ 100 nm and heights ~ 300 nm. The ZnO nanorod template for high efficiency of hybrid solar cells was determined by varying the concentration of the Zn precursor and the electrodeposition time. When the

Fig. 4. (a) UV/vis absorption spectra of MEH-PPV, TiO_2 nanotube, and TiO_2 nanotube/MEH-PPV films. (b) PL spectra of MEH-PPV and TiO_2 /MEH-PPV films.

Fig. 5. J-V curves of hybrid solar cells with the flat TiO₂ film and the TiO₂ nanotube as electron acceptor layers, respectively (inset: the cross-sectional image of the TiO₂ nanotube).

applied electrodeposition time was too long or the concentration of the Zn precursor was too small, the cells showed all poor performance. A maximum efficiency was obtained at the applied time of 15 min and the concentration of the Zn precursor of 5×10^{-4} M ZnCl₂. The PEDOT:PSS layer was deposited on the MEH-PPV incorporated TiO2 to reduce surface roughness by filling the voids in the composite films, resulting in the reduction of shunt losses. As demonstrated by the J-V curves in Fig. 5, an open circuit voltage (Voc) of 0.62 V, a short circuit current (J_{sc}) of 0.88 mA/cm², a fill-factor (FF) of 37.2%, and a power conversion efficiency (η_p) of 0.20% were obtained for the TiO₂ nanotubes and the MEH-PPV hybrid solar cell under 1 sun with air mass 1.5 Global illumination without any optimization of the processes such as a metal electrode or an annealing process. On the other hand, the cell with the flat TiO₂ film exhibited V_{oc} of 0.64 V, J_{sc} of 0.34 mA/cm², FF of 31.5%, and η_p of 0.068%, respectively. The increased efficiency of the cell using well-aligned TiO2 nanotubes as an electron acceptor can be attributed to the increased interfacial area for the charge separation and efficient charge transport compared to the flat TiO₂ film. Even though the η_p of the cell with TiO₂ tubes is about three times higher compared with the flat TiO₂ film, the present cell performance is similar to the previous reports of TiO₂ nanoparticle/MEH-PPV hybrid solar cells [54,55]. The insufficient performance of our cell is attributed to the large diameter and relatively low density of the TiO₂ tubes employed in this study, resulting in a lower surface area and the relatively inefficient charge separation, compared with the nanoparticles used in those reports. To achieve higher efficiency in a solar cell, the diameter and height of the tubes should be optimized with consideration for the following three factors: (1) The polymer exciton diffusion length is $\sim 10-20$ nm, wherein the photogenerated excitons will be more likely to recombine before reaching to the polymer/TiO₂ tube interface for dissociation [54]. (2) A hole mobility would be enhanced with pore diameters in the range of 50–75 nm [56]. (3) As the height of the tube increases, so do the shunt losses of the cell through direct contact between the TiO₂ tubes and the metal top electrode [57]. However, compared to the limited charge transport in the electron accepting network, which is formed by randomly interspersing TiO_2 nanoparticles, a more efficient charge separation and charge transport would be expected when an optimized geometrical arrangement of the electron accepting TiO_2 tubes is achieved [49–51,58].

4. Conclusions

In summary, this study successfully demonstrated highdensity arrays of vertically well-aligned TiO₂ nanotubes on ITO substrates by a simple and controllable fabrication method via the electrodeposition of ZnO nanorod templates and the spinon based sol-gel reaction of Ti-precursor. This novel method possesses several advantages: it is a simple, fast, and low cost process; there is enhanced flexibility for control of the shape, width, heights, and density of TiO_2 nanotubes; it is feasible to apply them directly on widely used ITO substrates; and they are capable of a large-area fabrication with good uniformity (typically $2 \text{ cm} \times 2 \text{ cm}$ under our conditions). The potential for useful applications of the TiO₂ nanotubes was studied by fabricating the hybrid solar cells based on the TiO₂/MEH-PPV. The power conversion efficiency of the cell with TiO₂ tubes was enhanced compared to that of the cell with flat TiO₂ film due to the extension of the interfacial area available for photo-induced charge separation and charge transport. This method for fabrication of well-aligned TiO₂ nanotube arrays can provide us with new features and applications in opto- and electronic devices.

Acknowledgments

This work was financially supported by Heeger Center for Advanced Materials (HCAM), the Ministry of Education of Korea through Brain Korea 21 (BK 21) program, the Korea Science and Engineering Foundation (KOSEF) through the National Research Lab. Program funded by Korean Government (MOST) (M10500000077-06J0000-07710), and MOCIE (Ministry of Commerce, Industry and Energy of the Korean Government) (10022811).

References

- [1] S. Iijima, Nature 354 (1991) 56.
- [2] J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H.-J. Choi, P. Yang, Nature 422 (2003) 599.
- [3] Z. Wang, G. Chumanov, Adv. Mater. 15 (2003) 1285.
- [4] Y.-G. Guo, J.-S. Hu, H.-P. Liang, L.-J. Wan, C.-L. Bai, Adv. Funct. Mater. 15 (2005) 196.
- [5] G.R. Patzke, F. Krumeich, R. Nesper, Angew. Chem. 114 (2002) 2554.
- [6] H. Shin, D.-K. Jeong, J. Lee, M.M. Sung, J. Kim, Adv. Mater. 16 (2004) 1197.
- [7] Y. Wang, J.Y. Lee, H.C. Zeng, Chem. Mater. 17 (2005) 3899.
- [8] X.-P. Shen, A.-H. Yuan, Y.-M. Hu, Y. Jiang, Z. Xu, Z. Hu, Nanotechnology 16 (2005) 2039.
- [9] J.M. Macák, H. Tsuchiya, P. Schmuki, Angew. Chem. Int. Ed. 44 (2005) 2100.
- [10] M. Adachi, Y. Murata, M. Harada, S. Yoshikawa, Chem. Lett. 29 (2000) 942.
- [11] S. Uchida, R. Chiba, M. Tomiha, N. Masaki, M. Shirai, Electrochemistry 70 (2002) 418.

- [12] J.M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Small 3 (2007) 300.
- [13] Y. Lan, X. Gao, H. Zhu, Z. Zheng, T. Yan, F. Wu, S.P. Ringer, D. Song, Adv. Funct. Mater. 15 (2005) 1310.
- [14] B.D. Yao, Y.F. Chan, X.Y. Zhang, W.F. Zhang, Z.Y. Yang, N. Wang, Appl. Phys. Lett. 82 (2003) 281.
- [15] A. Michailowski, D. AlMawlawi, G.S. Cheng, M. Moskovits, Chem. Phys. Lett. 349 (2001) 1.
- [16] M.S. Sander, M.J. Côté, W. Gu, B.M. Kile, C.P. Tripp, Adv. Mater. 16 (2004) 2052.
- [17] J.H. Lee, I.C. Leu, M.C. Hsu, Y.W. Chung, M.H. Hon, J. Phys. Chem. B 109 (2005) 13056.
- [18] J. Qiu, Z. Jin, Z. Liu, X. Liu, G. Liu, W. Wu, X. Zhang, X. Gao, Thin Solid Films 515 (2007) 2897.
- [19] J. Qiu, W. Yu, X. Gao, X. Li, Nanotechnology 17 (2006) 4695.
- [20] Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, H. Xu, J. Am. Chem. Soc. 125 (2003) 12384.
- [21] A. Ghicov, J.M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, P. Schmuki, Nano Lett. 6 (2006) 1080.
- [22] S. Bauer, S. Kleber, P. Schmuki, Electochem. Commun. 8 (2006) 1321.
- [23] J.M. Macak, H. Tsuchiya, S. Berger, S. Bauer, S. Fujimoto, P. Schmuki, Chem. Phys. Lett. 428 (2006) 421.
- [24] M. Fu, J. Zhou, Q. Xiao, B. Li, R. Zong, W. Chen, J. Zhang, Adv. Mater. 18 (2006) 1001.
- [25] C. Lévy-Clément, R. Tena-Zaera, M.A. Ryan, A. Katty, G. Hodes, Adv. Mater. 17 (2005) 1512.
- [26] J. Weng, Y. Zhang, G. Han, Y. Zhang, L. Xu, J. Xu, X. Huang, K. Chen, Thin Solid Films 478 (2005) 25.
- [27] A. Goux, T. Pauporté, J. Chivot, D. Lincot, Electrochim. Acta 50 (2005) 2239.
- [28] S.-S. Kim, C. Chun, J.-C. Hong, D.-Y. Kim, J. Mater. Chem. 16 (2006) 370.
- [29] D.K. Yi, S.J. Yoo, D.-Y. Kim, Nano Lett. 2 (2002) 1101.
- [30] H. Spanggaard, F.C. Krebs, Sol. Energy Mater. Sol. Cells 83 (2004) 125.
- [31] J. Bouclé, P. Ravirajan, J. Nelson, J. Mater. Chem. 17 (2007) 3141.
- [32] K.M. Coakly, Y. Liu, C. Goh, M.D. McGehee, Mater. Res. Bull. 30 (2005) 37.
- [33] M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, D.S. Ginley, Appl. Phys. Lett. 89 (2006) 143517.
- [34] D.C. Olson, S.E. Shaheen, M.S. White, W.J. Mitchell, M.F.A.M. van Hest, R.T. Collins, D.S. Ginley, Adv. Funct. Mater. 17 (2007) 264.
- [35] Y. Liu, S.R. Scully, M.D. McGehee, J. Liu, C.K. Luscombe, J.M.J. Fréchet, S.E. Shaheen, D.S. Ginley, J. Phys. Chem. B 110 (2006) 3257.
- [36] M. Lira-Cantu, K. Norrman, J.W. Andreasen, N. Casan-Pastor, F.C. Krebs, J. Electrochem. Soc. 154 (2007) B508.
- [37] M. Lira-Cantu, K. Norrman, J.W. Andreasen, F.C. Krebs, Chem. Mater. 18 (2006) 5684.
- [38] F.C. Krebs, J.E. Carlé, N. Cruys-Bagger, M. Andersen, M.R. Lilliedal, M.A. Hammond, S. Hvidt, Sol. Energy Mater. Sol. Cells 86 (2005) 499.
- [39] R. Könenkamp, K. Boedecker, M.C. Lux-Steiner, M. Poschenrieder, F. Zenia, C. Levy-Clement, S. Wagner, Appl. Phys. Lett. 77 (2000) 2575.
- [40] M. Kim, B. Kang, S. Yang, C. Drew, L.A. Samuelson, J. Kumar, Adv. Mater. 18 (2006) 1622.
- [41] Q. Fan, B. McQuillin, D.D.C. Bradely, S. Whitelegg, A.B. Seddon, Chem. Phys. Lett. 347 (2001) 325.
- [42] G. Carcano, M. Ceriani, F. Soglio, Hybr. Circ. 32 (1993) 12.
- [43] M. Lira-Cantu, F.C. Krebs, Sol. Energy Mater. Sol. Cells 90 (2006) 2076.
- [44] Z. Xie, B.M. Henry, K.R. Kirov, H.E. Smith, A. Barkhouse, C.R.M. Grovenor, H.E. Assender, G.A.D. Briggs, G.R. Webster, P.L. Burn, M. Kano, Y. Tsukahara, Thin Solid Films 511/512 (2006) 523.
- [45] M.Y. Song, J.K. Kim, K.-J. Kim, D.Y. Kim, Synth. Met. 137 (2003) 1387.
- [46] M.Y. Song, K.-J. Kim, D.Y. Kim, Sol. Energy Mater. Sol. Cells 85 (2005) 31.
- [47] P.A. van Hal, M.M. Wienk, J.M. Kroon, W.J.H. Verhees, L.H. Slooff, W.J.H. van Gennip, P. Jonkheijm, R.A.J. Janssen, Adv. Mater. 15 (2003) 118.
- [48] P. Ravirajan, S.A. Haque, J.R. Durrant, D. Poplavskyy, D.D.C. Bradely, J. Nelson, J. Appl. Phys. 95 (2004) 1473.
- [49] K.M. Coakley, M.D. McGehee, Appl. Phys. Lett. 83 (2003) 3380.

- [50] D.C. Olson, J. Piris, R.T. Collins, S.E. Shaheen, D.S. Ginley, Thin Solid Films 496 (2006) 26.
- [51] Q. Wei, K. Hirota, K. Tajima, K. Hashimoto, Chem. Mater. 18 (2006) 5080.
- [52] N.C. Greenham, X. Peng, A.P. Alivisatos, Phys. Rev. B 54 (1996) 17628.
- [53] A. Petrella, M. Tamborra, M.L. Curri, P. Cosma, M. Striccoli, P.D. Cozzoli, A. Agostiano, J. Phys. Chem. B 109 (2005) 1554.
- [54] P. Ravirajan, S.A. Haque, J.R. Durrant, D.D.C. Bradley, J. Nelson, Adv. Funct. Mater. 15 (2005) 609.
- [55] A.J. Breeze, Z. Schlesinger, S.A. Carter, Phys. Rev. B 64 (2001) 125205.
- [56] K.M. Coakley, B.S. Srinivasan, J.M. Ziebarth, C. Goh, Y. Liu, M.D. McGehee, Adv. Funct. Mater. 15 (2005) 1927.
- [57] P. Ravirajan, A.M. Peiro, M.K. Nazeeruddin, M. Graetzel, D.D.C. Bradley, J.R. Durrant, J. Nelson, J. Phys. Chem. B 110 (2006) 7635.
- [58] T.-W. Zeng, Y.-Y. Lin, H.-H. Lo, C.-W. Chen, C.-H. Chen, S.-C. Liou, H.-Y. Huang, W.-F. Su, Nanotechnology 17 (2006) 5387.